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Using the Green function of arbitrary rigid Brownian diffusion Equations describing homo- and heteronuclear relaxation
(Goldstein, Biopolymers 33, 409–436, 1993) , it was analytically rates in terms of values of spectral density function Jqq =(v)
shown that coupling between translation and rotation diffusion can be found elsewhere (1) . Here, Jqq =(v) is a Fourier trans-
degrees of freedom does not affect the correlation functions rele- form of the relevant correlation function Fqq =(t) Å
vant to the NMR intramolecular relaxation. It follows that spectral

»F*q ( t)Fq =( t / t) … . As usual, F( t) is the time-dependent
densities usually used for the anisotropic rotation diffusion

part of the interaction causing the relaxation. For the intra-(Woessner, J. Chem. Phys. 37, 647–654, 1962) can be regarded
molecular relaxation mechanisms F( t) is not depend explic-as exact in respect to the rotation–translation coupling for the
itly on the coordinates and can be expressed by Wignerspin system connected with a rigid body. q 1998 Academic Press

matrix components D (2)
q0 [VL] (4) :Key Words: NMR; relaxation; Green function; diffusion; model-

free.
Fqq =(t) Ç »D*(2)

q0 [VL]rD (2)
q =0[V *L] … . [1]

Here VL and V *L represent Euler’s angles defining orientation
of the relevant interaction vector in the laboratory coordinateComprehensive quantum mechanical theory connecting

different pathways of the spin relaxation with values of spec- frame in time t and t / t, respectively. If intramolecular
motions are not regarded, the orientation of the vector in thetral density function at the characteristic frequencies was

established long ago (1) . There is much confusion, however, molecular coordinate system does not depend on time. In
this coordinate systemregarding the calculation of these spectral densities, because

it intrinsically requires a model of the spin motions. Thus
relaxation studies in liquids always rely upon some model Fqq =(t) Ç ∑

2

l ,l =Å02

»D*(2)
ql [V]rD (2)

q =l =[V *] …
of molecular Brownian motion. Commonly in the consider-
ation of different relaxation mechanisms either translation 1 D*(2)

l0 [VM]rD (2)
l =0 [VM] , [2]

(1) or rotation diffusion (2) is taken in to account. It is
clear, however, that a body of irregular shape undergoes where V and V * are Euler’s angles defining orientation of the
a coupled translation and rotation diffusion. For example, molecular coordinate system with respect to the laboratory
translation of a screw-shaped particle would lead to rotation coordinate frame in moments t and t / t, respectively. VM

and vice versa. Diffusion of a rigid body of arbitrary shape are angles of the relevant vector in the molecular coordinate
can be rigorously described using 6 1 6 diffusion matrix frame. The correlator in Eq. [2] can be calculated using the
composed from four 3 1 3 matrixes, which are translation Green function G(ru *V *Éru V) . It provide the probability of
D t , and rotation D r tensors and tensors D rt , and D tr describ- finding a rigid body at point r

u
* with orientation V * at time

ing coupling between rotation and translation degrees of t / t, if at time t it was at point r
u

with orientation V:
freedom (3) . It is not clear, however, whether coupling be-

»D*(2)
ql [V]rD (2)

q =l =[V *] …tween rotation and translation diffusion is significant for the
calculation of spectral densities. In this communication we

Å 1
8p 2 * D*(2)

ql [V]rD (2)
q =l =[V *]G(r

u
*V *Ér

u
V)show that rotation–translation coupling has no effect on

NMR relaxation rates, at least if only intramolecular relax-
ation mechanisms are concerned. 1 dr

u
dr

u
* dVdV *. [3]
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The Green function of a rigid particle diffusion in liquid, »D*(2)
ql [V]rD (2)

q =l =[V *] …
which rigorously accounts for the translation and rotation
coupling, was recently obtained by Goldstein (5) : Å 1

8p 2 * D*(2)
ql [V]rD (2)

q =l =[V *]dVdV *GR(VÉV *) . [6]

G(r
u
*V *Ér

u
V)Å ∑

J ,n ,J =,n =,m
* dpz

2p
e ipz(r =z0rz )C J

nm(V)C* J =
n =m (V *) Here GR(VÉV *) is the Green function of rotation diffusion

without coupling with translation:
1 exp{0(p 2

z D0/ EJn/ p 2
zV

(2)
Jn )t}

GR(VÉV *) Å ∑
J ,n ,m

C J
nm(V)C* J

nm (V *)exp{0(EJn)t}. [7]
1 »0ÉTO aJnmexp{*

t

0

HI( t *)dt *}a/J =n =mÉ0 … .

[4] The same form of the Green function for the rotation diffu-
sion without translations was obtained by Favro (6).

It follows from Eqs. [2] , [6] that coupling between trans-Here pz is the z projection of the molecular momentum in
lation and rotation diffusion degrees of freedom does notlaboratory system coordinate frame; r

u
is the molecular coor-

effect the correlation functions relevant to the NMR intramo-dinate system origin; Ejn and C J
nm(V) are the eigenvalues

lecular relaxation. It can be shown that spectral densitiesand eigenfunctions of the anisotropic rotator, respectively;
calculated using Eqs. [6] , [7] are the same as those obtainedD0 Å trace(D t) /3; V (2)

Jn Å »C J
nmÉV (2)

ÉC J
nm… is the matrix

without accounting for translation–rotation coupling byelement of the V (2) operator in Goldstein’s (5) notation; T̂
Woessner (2) . Thus Woessner’s spectral densities can beis the operator of chronological order; HI is the off-diagonal
regarded as exact with respect to the rotation–translationpart of the Green function evolution operator in the interac-
coupling for the spin system connected with a rigid body.tion representation and representation of secondary quanti-
It is notable, however, that the results presented have beenfication, where raising and destroying operators a/ and a
proved in this paper only for the intramolecular relaxationobey the following rules: aJnmÉC

J
nm(V) … Å É0 … and

mechanisms, which are not connected with the displacementa/JnmÉ0 … Å ÉC J
nm(V) … . It should be noted that there is a

of molecular origin during Brownian motion.misprint in Eq. [26] of Goldstein’s work (5) . Namely, the
term in the second line of the equation 2Drt

zzD
1
00 must be
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»D*(2)
ql [V]rD (2)

q =l =[V *] …
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